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ABSTRACT
Finite state machine (FSM) is a type of computation models widely

used in various software programs. Extracting implemented FSMs

has many important applications in the networking, software en-

gineering and security domains. In this paper, we first conduct an

empirical study to understand how FSMs are implemented in real-

world software. Under the guidance of our study results, we then

design a static analysis tool, FSMExtractor, to automatically identify

and synthesize implemented FSMs. Evaluation using 160 software

programs from three sources shows that FSMExtractor can extract

all implemented FSMs and report very few false positives.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
Software testing and debugging; •Networks→ Protocol testing
and verification.
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1 INTRODUCTION
A finite state machine (FSM) is a mathematical computation model

that performs a series of predetermined actions in reaction to the

model inputs [24]. FSMs provide a concise and expressive way to

describe program logic, so that they are widely adopted in different

types of software, including network protocols, compiler and event-

driven programs.

Automatically extracting implemented FSMs from a program

has many important applications. First, the implementation of an
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FSM may be inaccurate. By comparing the extracted version with

its original design, one can detect potential mistakes residing in

an implementation [28]. Second, the network verification process

depends on underlying FSM models in different components to

validate the whole network’s properties (e.g. isolation, reachability).

Right now, the FSMs fed into verification are largely handcrafted

through manual inspection [15, 37], which is time-consuming and

error-prone. Third, extracted FSMs can help developers and auto-

mated program analysis tools better understand program semantics,

facilitating the building of future code debloating [19, 33, 34] and

fuzzing techniques [2, 11, 42].

Unfortunately, there has not yet been an existing algorithm that

can extract all implemented FSMs from a program. Existing static

techniques [22, 38] can extract certain models implemented in a

program, but their extracted models are less concise and expressive

than FSM. Dynamic techniques [6, 13, 27] view the whole program

as a blackbox and model it as one single FSM in a coarse granularity,

failing to extract all FSMs and localize program code pertaining to

an implemented FSM. Dynamic techniques highly depend on inputs

used during FSM inference, lacking soundness and completeness.

In this work, we present a tool FSMExtractor that can effectively

extract implemented FSMs in a program with good coverage and

accuracy. FSMExtractor is built based on LLVM infrastructure, and

it takes LLVM intermediate code emitted during compilation as

input. FSMExtractor utilizes static analysis techniques to search

FSM implementations inside an input program and outputs a five-

element tuple (Q ,
∑
, δ , s0, F ) describing each identified FSM.

We build FSMExtractor in two steps. First, we conduct an empir-

ical study on how FSMs are implemented in the real world. After

examining 25 FSMs in the CGC dataset [1], we find that FSM im-

plementations rely on certain code patterns. For example, all of

our studied FSMs are implemented in loops which do not take

a constant trip count and a state transition operation is control

dependent on the current state. Second, we design static analysis

routines for the code patterns. Our static analysis techniques can

recognize suspicious FSM loops, pinpoint variables representing

FSM states, and synthesize the five-element tuple for each iden-

tified FSM. We use 160 programs from three sources to evaluate

FSMExtractor. The evaluation results show that FSMExtractor can

identify all implemented FSMs with very few false positives.

2 UNDERSTANDING REAL-WORLD FSM
IMPLEMENTATIONS

In this section, we first provide some background for FSM and

the methodology of our empirical study. We then present detailed

empirical study results.
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2.1 Background and Methodology
A finite state machine (FSM) is a mathematical computation model

that takes external inputs and transmits among a set of predefined

internal states. At any time, an FSM can only be at one state. When

a certain condition is satisfied, an FSM transits from one state to

another. An FSM can be specified using a five-element tuple (Q ,

∑
,

δ , s0, F ), where Q is a set of internal states,

∑
is an input alphabet,

δ is a set of transition functions, s0 is the initial state, and F is a set

of final states.

We inspect the DARPA CGC dataset [1] to understand how FSMs

are implemented in the real world. We choose the CGC dataset

because it contains a large number of diverse programs simplified

from real-world software and it is also widely used in security

community [35, 36, 43].

1 typedef enum setState {

2 start = 0,

3 open_set ,

4 close_set ,

5 open_double ,

6 close_double ,

7 error

8 } setState;

9

10 bool cgc_parse_set(char * right) {

11 setState state = start;

12

13 while (*right && state != close_set) {

14 if (*right == '|') {

15 switch(state) {

16 case start:

17 state = open_set; break;

18 case open_double: break;

19 default:

20 state = close_set; break;

21 }

22 } else if (*right == '"') {

23 switch(state) {

24 case open_double:

25 state = close_double; break;

26 case open_set:

27 state = open_double; break;

28 default:

29 state = error; goto end;

30 }

31 } else {

32 switch(state) {

33 case open_double: break;

34 default:

35 state = error; goto end;

36 }

37 }

38 right ++;

39 }

40 end:

41 if ( state != close_set ) {

42 return false;

43 }

44 return true;

45 }

Figure 1: An FSM implementation from the CGCdataset. The
code has been simplified for illustration purpose.

To conduct the study, we first randomly sample 40 programs

from the CGC dataset. We then manually inspect the sampled pro-

grams and look for FSM implementations. In total, we identify 25

implemented FSMs and treat them as the targets of our study. Fig-

ure 1 shows one such example. Function cgc_parse_set() takes

start

error

open_set close_set

open_double close_double

| |
“

”

|

Figure 2: An implemented FSM in the CGC dataset.

the string right as input and returns true if right matches reg-

ular expression “|("[^"]*")?|”. Figure 2 shows the underlying

FSM. In total, the implemented FSM contains six different states

and nine possible state transitions.

2.2 Study Results
To guide the design of FSMExtractor, our empirical study is mainly

conducted to answer the following five questions.

Q1. what code constructs are used to implement the FSMs? Since

our goal is to statically identify and extract implemented FSMs, we

must know what code constructs to inspect. Not surprisingly, all

our studied FSMs are implemented using a loop, like the while loop
at line 13 in Figure 1. In each loop iteration, an implemented FSM

processes an input and determines whether to stay in the current

state or transit to a new state. The underlying intuition is that an

FSM usually needs to process multiple inputs and similar logics are

applied during the processing, so that using a loop is a natural way

to implement an FSM.

Another important observation is that an FSM loop usually does

not execute constant iterations or take a constant trip count. Its

execution dynamically depends on its inputs. Intuitively, it is very

rare that an FSM can arrive at a final state after processing a prede-

fined, constant number of inputs. We take the FSM implemented

in Figure 1 for example. The iteration number of the while loop is

not constant and when the loop terminates its execution depends

on the content of the string right.
Q2. how internal states (Q) are maintained by the FSMs? Intuitively,
there must be a state variable to track the current state of an FSM.

The value of the state variable changes when a state transition

happens. Our study confirms this intuition. We also find that state

variables are either in integer type or enumeration type, and their

values are discrete and bounded in a certain range. This finding

indicates that static value set analysis [8, 17] can potentially deter-

mine all possible states for an implemented FSM. For example, the

local variable state declared at line 11 is the state variable of the

FSM implementation in Figure 1. It is in enumeration type. In total,

it has six possible values specified during its type declaration at

line 1, corresponding to the six states in Figure 2. Interestingly, one

studied FSM loop contains two state variables, which reminds us

that developers could use one loop to implement multiple FSMs.

We need to extract all of them when designing FSMExtractor.

Q3. what are the input alphabets (
∑
)? The input alphabet of an FSM

is theoretically bounded by the data type used to represent inputs.

For example, the input alphabet of the FSM in Figure 1 contains all

possible byte values. There are also cases where an input alphabet

is only a subset of all possible values in a particular type, and thus



we think value set analysis should be applied to help refine the

input alphabet of an identified FSM.

We have two observations about how an FSM loop handles in-

puts. First, an FSM loop processes a distinct input in each iteration.

Sometimes, an FSM loop needs to refer to a different memory lo-

cation for a new input. Sometimes, a new input is written to the

same location before an FSM loop starts its procession in an itera-

tion. For example, right in Figure 1 points to the input character

processed by the FSM loop in each iteration. The value of right is

incremented by one at line 38, so that the FSM loop reads an input

from a different memory location in each iteration. Second, when

implementing an FSM, developers usually do not explicitly imple-

ment the processing rule for every possible input value. Instead,

they tend to specify rules only for several important input values

and leave the others to be handled by a default rule. For example,

only the processing rules for ‘|’ and ‘"’ are explicitly specified

in Figure 1, and all the other input byte values are handled by the

default rule at line 31.

Q4. how the transition functions (δ ) are implemented? One transition
function is executed in each iteration of an FSM loop. It produces

the next state for the FSM to transmit to based on the current state

and the current input value. We observe that transition functions

are implemented using control-flow constructs (e.g., if, switch).
For example, a transition function in Figure 1 is implemented at

line 14, 15, 16, and 17. If the current state is start at line 16 and

the current input value is ‘|’ at line 14, the transition function

outputs open_set as the next state at line 17. Line 22, 23, 24, and
25 implement another transition function, which consumes an in-

put character ‘"’ at line 22 and transits from the current state

open_double at line 24 to the next state close_double at line 25.
Q5. how to specify the initial states (s0) and the final states (F )? The
initial state s0 of an FSM can be specified by the value of the state

variable before the execution of the corresponding FSM loop. For

example, the initial state s0 of the FSM in Figure 1 is start, which
is the value of state before the loop execution at line 13. When

an FSM loop finishes its execution, all possible values of its state

variable constitute F . We take the FSM implemented in Figure 1

as an illustration. The while loop terminates its execution when

finishing parsing the string right. At that time, state can be any

of the six values specified during the type declaration at line 1.

Therefore, any state of the FSM in Figure 2 can be a final state.

Discussion. Our empirical study shows that FSM implementations

follow certain code patterns. For example, all our studied FSMs are

implemented using a loop, and state transitions are implemented

in a way that the next value of a state variable is control dependent

on the current value of the state variable and the current input.

This finding motivates us to leverage static analysis to identify

FSM implementations through matching the code patterns. We will

present more details later in Section 3.

Threats to the validity of our study could come from several

aspects. All our studied FSM implementations come from the CGC

dataset, which is designed for security purposes and only contains

simplified programs instead of real software. Although all the stud-

ied FSMs are implemented in a similar way, we do believe that

there are other methods to implement an FSM, such as using an

event handler or a recursive function. Despite these limitations,

all our findings are summarized after inspecting a relatively large

number of randomly sampled FSM implementations. We believe

our findings are intuitive and general enough to represent a high

percentage of FSMs implemented in real-world software.

3 FSMEXTRACTOR DESIGN
Our empirical study in Section 2 shows that an FSM is usually

implemented in a loop which does not take a constant trip count

(or iteration number) and conditionally updates a state variable to

transit to a new state in each iteration. Therefore, FSMExtractor

searches FSM loops by first filtering loops with constant trip counts

(Section 3.1) and then identifying loops with state variable updates

(Section 3.2). The ultimate goal of FSMExtractor is to construct

FSMs implemented in a program, and thus we will discuss how

FSMExtractor figures out the five-element tuple (Q ,

∑
, δ , s0, F ) for

each identified FSM in Section 3.3.

Algorithm 1 shows the workflow of FSMExtractor. FSMExtractor

is built based on LLVM infrastructure, so that it takes LLVM inter-

mediate code of a program as input. After analysis, FSMExtractor

outputs the five-element tuple (line 8) and source code information

(line 9) for each implemented FSM in the program.

Algorithm 1 Finite State Machine Extraction

Require: LLVM IR of a program: P
1: function FSMExtractor(P )
2: initialize an empty FSM set S = {}

3: for each loop l in P do
4: if l takes a constant trip count then
5: continue
6: end if
7: if l has state variable updates then
8: t(Q ,

∑
, δ , s0, F )← ConstructFSM(l )

9: srcInfo← ExtractSRCInfo(l )
10: S.Insert((t, srcInfo))

11: end if
12: end for
13: return S
14: end function

3.1 Filtering Loops with Constant Trip Counts
As discussed in Section 2, an FSM is usually implemented using a

loop and the loop processes one input in each iteration to decide

whether to transit to a new state. In reality, it is very rare that an

FSM can arrive at a final state after processing a predefined, constant

number of inputs. Our empirical study confirms this intuition. None

of our studied FSM loops take a constant trip count. To sum up,

given a loop which iterates a constant number in each execution,

the loop is unlikely to be an FSM implementation.

We mainly leverage scalar evolution analysis [5, 7, 44] to iden-

tify loops whose trip counts are constant. Scalar evolution analysis

can identify reduction variables inside a loop. Reduction variables

are integer variables, whose values are updated with a constant

delta in each loop iteration. For example, variable right is the

only reduction variable inside the loop in Figure 1, since its value



is incremented by one in every loop iteration. When a loop fin-

ishes its execution, the value change of a reduction variable is a

multiplication of the iterations executed by the loop.

After identifying reduction variables inside a loop, FSMExtractor

examines each exit condition of the loop and checks whether any

exit condition is to compare a reduction variable with a constant

number. If so, then the loop’s trip count is constant and FSM-

Extractor filters out the loop. We take the FSM implementation

in Figure 1 as an illustration. Variable right is the only reduction

variable inside the loop. None of the exit conditions of the loop

compare right with a constant number, and only the value read

from the memory location pointed by right is used in an exit con-

dition. Therefore, FSMExtractor does not filter out the loop and

considers it as a potential FSM loop for further analysis.

3.2 Pinpointing State Variables
Our empirical study shows that state variables are either in integer

or enumeration type and an FSM loop conditionally conducts a

state transition in each iteration. Therefore, an FSM loop must

contain at least one memory write to an integer (or an enumeration)

variable. Since transition functions need to refer to the current state,

a value assigned to a state variable in one iteration of an FSM loop

needs to propagate to future iterations. Given a candidate FSM

loop, FSMExtractor leverages live variable analysis [9] to identify

possible state variables, which are integer variables updated inside

the loop and have updated values live outside the loop or in future

loop iterations.

We illustrate this approach by taking the FSM implementation

in Figure 1 for example. Variable state is an enumeration variable

and it is updated with a new value at line 17, 20, 25, 27, 29, and 35

inside the while loop. These new values are possibly read at line 15,

23 and 32 in the next iteration of the loop or at line 41 outside the

loop, so that these values are live in the next iteration and outside

the loop. Therefore, FSMExtractor considers variable state as a

potential state variable.

We further eliminate false positives when identifying state vari-

ables by considering how an FSM conducts state transitions. As

discussed in Section 2, a transition function refers to the current

state to determine the next state. Therefore, defining the next state

through writing a new value to a state variable is control depen-

dent [16] on a predicate evaluation using the current value of the

state variable. We take the FSM in Figure 1 as an example. Transit-

ing to state open_set at line 17 by assigning open_set to state is

control dependent on the predicate evaluation of “state==start”
at line 15, where the current value of state is read and start is a

constant value declared at line 2. As another example, transiting to

close_double at line 25 is control dependent on the evaluation of

“state==open_double” at line 23, where the current value of the
state variable state is read.

FSMExtractor implements this mechanism through the following

two steps. First, for each memory write to an integer (or an enu-

meration) variable inside a candidate loop, FSMExtractor searches

conditional branches inside the loop which the memory write is

control dependent on. Second, FSMExtractor checks whether the

condition of a searched branch is data dependent on the value of

the same integer variable. For example, the memory write at line

17 is conducted on an enumeration variable and it is control de-

pendent on the underlying conditional branch instruction of the

switch statement at line 15 and the case statement at line 16. The

condition of the branch is “state==start” and it is data dependent
on the value of the same enumeration variable state. Therefore,
FSMExtractor identifies state as a state variable.

3.3 Constructing FSMs
We consider a loop as an FSM loop, if it does not take a constant

trip count and contains updates to a state variable. As discussed in

Section 2, an FSM loop may contain more than one state variable. In

this case, the loop is used to implement multiple FSMs.With an FSM

loop and identified state variables inside the loop, FSMExtractor

constructs an FSM for each state variable, by figuring out the five-

element tuple (Q ,
∑
, δ , s0, F ).

To figure out all possible states (Q) of an FSM is equivalent to

determine all possible values of its state variable. If a state variable

is in enumeration type, FSMExtractor recognizes all its possible

values by examining the declaration of the enumeration type. For

example, FSMExtractor identifies all the six possible values of the

state variable state in Figure 1 by inspecting the type declaration

at line 1. If a state variable is an integer variable, FSMExtractor

regards a constant value assigned to the state variable or compared

with the state variable as a possible state. The current version of

FSMExtractor only examines the function containing an analyzed

FSM loop, so that it may miss some states. Future work could

inspect the whole program by applying an interprocedural value

set analysis to identify more states.

One iteration of an FSM loop processes a distinct input, such as

a new character from a string or a new incoming package. For the

new input, an FSM loop either refers to a different memory location

or refers to the same location whose content is updated before the

FSM loop starts its processing. We take the FSM loop in Figure 1 as

an example. Variable right is a pointer pointing to input characters.
The value of right is incremented by one in each iteration at line

38, so that the FSM loop refers to a different memory location for

an input to process in each iteration. After figuring out where an

FSM locates its inputs, FSMExtractor understands the type of the

inputs and considers all possible values in that type as the input

alphabet

∑
. For example, FSMExtractor recognizes

∑
as all possible

byte values for the FSM implemented in Figure 1.

FSMExtractor mainly relies on symbolic execution [10, 12] to

synthesize transition functions (δ ). Given a state variable, FSM-

Extractor conducts reachability analysis on CFG to search paths

starting from an assignment site of the state variable and ending at

an assignment site. For each path, FSMExtractor applies symbolic

execution to collect path constraints and utilizes a constraint solver

to validate the following two conditions. First, there are no conflict-

ing constraints among the collected path constraints. Second, all

collected path constraints do not conflict with the pre-condition

that the state variable is equal to the assigned value at the starting

assignment site. If the two conditions are satisfied, FSMExtractor

successfully identifies a transition function, which transits the FSM

from one state to another state pertaining to the values used at the

starting assignment site and ending site respectively. By analyzing

the collected path constraints, FSMExtractor can also figure out the

input value processed by the identified transition function.



We illustrate how FSMExtractor synthesizes transition functions

using the implemented FSM in Figure 1 as an example. Line 17→ 13

→ 22→ 23→ 26→ 27 is a path from an assignment site of the state

variable state to another assignment site. The path constraints are

“*right != NULL && state != close_set && *right == ‘"’
&& state == open_set”, which do not contain conflicting con-

straints. The path constraints do not conflict with the pre-condition

“state==open_set” specified at the starting assignment site at line

17. Therefore, FSMExtractor identifies a transition function which

transits the FSM from open_set to open_double. FSMExtractor

figures out the input value used by the transition function as ‘"’,
indicated by the path constraint “*right == ‘"’”. Line 17→ 13→

14→ 15→ 16→ 17 is another path identified by the reachability

analysis. However, the path constraints (“*right != NULL &&
state != close_set && *right == ‘|’ && state == start”)
conflict with the pre-condition (“state==open_set”) specified at

line 17, and thus FSMExtractor does not consider this path indicates

a transition function.

FSMExtractor computes s0 and F of an identified FSM through

analyzing the value of the state variable before the execution of

the corresponding FSM loop and after the execution of the loop

respectively. For example, the value of state is start before the
loop in Figure 1 executes at line 13, so that s0 of the FSM is start.
The loop terminates when finishing parsing the input string pointed

by right, leaving state to be any value declared at line 1, and thus
F consists of all states of the FSM in Figure 2.

4 EXPERIMENT
In this section, we will describe our experimental settings in Sec-

tion 4.1 and experimental results in Section 4.2.

4.1 Methodology
Implementation and Platform. We implement FSMExtractor

using LLVM-7.0.0 [25], and conduct our experiments on a Linux

machine, with E5-2630 CPU, 32GB memory and 3.10 kernel.

Benchmarks. FSMExtractor is a tool to automatically extract FSMs

implemented in a program. Since we build FSMExtractor using

LLVM, our current implementation can only work on C/C++ pro-

grams. However, we believe that our algorithm is general enough

to be extended to other programming languages.

To evaluate FSMExtractor, we collect C/C++ programs from

three sources. First, we evaluate FSMExtractor on two programs in

a CTF contest [3]. One program contains an FSM, and the other one

does not contain any FSM. Second, we leverage the DARPA CGC

dataset [1]. In total, there are 197 programs in the CGC dataset. As

discussed in Section 2, we have already used 40 of them for our

empirical study. Therefore, we use the remaining 157 programs

in our evaluation. Third, we apply FSMExtractor to OpenVPN [4],

which is an implementation of virtual private network. OpenVPN

is widely-used and it is included in software packages of many

released Linux version.

Source # programs avg. KLOC # loops # FSM loops
CTF 2 0.3 19 1

CGC 157 7.1 6607 59

OpenVPN 1 120 512 6

Table 1: Benchmark Information.
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Figure 3: How the proportion of FSMs distributes across dif-
ferent numbers of states.

The benchmark information is shown in Table 1. In total, we use

160 different programs to evaluate FSMExtractor. Our benchmark

set is a representative sample of real-world software, since each

program is either a widely-used real application or a simplified

program from real software. Our benchmark programs are diverse.

They cover programs in small, medium and large sizes, with lines

of code ranging from 0.3 thousand to more than 100 thousand.

There are more than seven thousand loops inside our benchmark

programs. Accurately identifying FSM implementations among the

loops is not easy. To sum up, we believe that our benchmarks are

good enough to evaluate the effectiveness of FSMExtractor.

Evaluation Setting. For all our benchmark programs, wemanually

examine all their loops and identify all FSM loops. As shown in

Table 1, there are in total 66 FSM loops. Four FSM loops contain

two state variables, and all the other FSM loops contain only one

state variable. Therefore, there are in total 70 FSMs implemented

in all our benchmarks. We apply FSMExtractor to all benchmark

programs. We mainly compute metrics to answer two research

questions regarding the coverage and accuracy of FSMExtractor.

Q1. Coverage: whether FSMExtractor identifies all FSMs?

Q2. Accuracy: whether FSMExtractor reports any false positive?

4.2 Experimental Results

Source # FSM loops # FSMs # FNs # FPs
CTF 1 1 0 0

CGC 59 63 0 2

OpenVPN 6 6 0 0

Table 2: Experimental Results.
Coverage. As shown in Table 2, FSMExtractor successfully iden-

tifies all the 66 FSM loops from the benchmarks. Since there are

four FSM loops containing two state variables and FSMExtractor

constructs an FSM for every identified state variable, there are in

total 70 extracted FSMs. FSMExtractor has no false negative.

We then further inspect the characteristics of identified FSMs.

For most of them, their state variables are local variables. There

are only three FSMs using global variables as their state variables.

Most FSMs use standalone integer (or enumeration) variables to

represent their states, and only three FSMs use struct fields as

their state variables. These results show that FSMExtractor can

identify state variables implemented in different ways.

Figure 3 shows how the proportion of FSMs distributes across

different state numbers for the FSMs identified by FSMExtractor

and the FSMs studied in Section 2. Most FSMs from the two sources



contain two or three states, and the proportion drops significantly

when the state number is larger than three. On average, one identi-

fied FSM has 3.02 states, and one studied FSM has 3.84 states. The

average state numbers are similar, demonstrating that the sampled

FSM set used in our study is general.

Accuracy. As shown in Table 2, FSMExtractor is accurate. It only

has two false positives. The ratio of false positives over FSMs is

1/35. The two false positives are due to the same reason. In each

case, an integer variable is used to hold a function pointer. The

identified FSM loop checks whether the integer variable is zero. If

so, the integer variable is assigned with a constant number, which

is actually the entry address of a function. FSMExtractor mistakenly

identifies the integer variable as a state variable and the loop as an

FSM implementation.

4.3 Discussions and Limitations
All false positives reported by FSMExtractor are due to the fact

that FSMExtractor does not consider how an identified state vari-

able is used outside the corresponding FSM loop. We plan to ex-

tend FSMExtractor to eliminate similar false positives. The design

of FSMExtractor is guided by the empirical study, and it is also

limited by the study. One limitation is that the current version

of FSMExtractor cannot detect FSMs implemented in a recursive

function or an event handler. FSMExtractor is a static technique.

It faces many traditional technical challenges (e.g. alias analysis,

inter-procedural analysis). FSMExtractor may have both false pos-

itives and false negatives when analyzing pointer-heavy code. It

can also miss FSMs whose state variable updates are conducted by

an indirect callee deep in the call chain from the FSM loop. In the

future, we plan to design practical heuristics or combine dynamic

techniques with FSMExtractor to address these limitations.

5 APPLICATIONS
In this section, we will discuss how the extracted FSMs can facilitate

various network and security practices.

Network Verification. In network operation, before a network

is deployed into production, its configuration needs to be verified

to avoid runtime errors. In such a network verification process,

network operators usually build behavior models for individual net-

work appliances and then reason about the end-to-end properties

of the network [15, 20, 21, 23, 26, 30]. FSM is an expressive behavior

model to represent a wide range of network appliances, including

switches and software network functions (e.g. load balancers, fire-

walls, NAT). With individual FSMs and the network topology ready,

the network operator could verify whether the communication

between end hosts satisfies properties (e.g. reachability, isolation,

loop-freedom).

FSMExtractor is helpful in the procedure of “building behav-

ior models for individual network appliances”, which currently is

manually crafted by the network operators by reading the code

or according to their empirical understanding. FSMExtractor can

primarily automate the transformation from network software to

FSMs. More importantly, it provides the confidence that the output

FSM is logically equivalent to the original software.

Code Debloating. Code bloat refers to codes in an unnecessarily

large size [31]. It widely exists in production-run software [32].

If untackled, bloated codes can introduce vulnerabilities [18] and

degrade the software performance [14, 40, 41]. Many techniques

are proposed to address the code bloating problem. They either re-

move temporary object copies [14, 29, 39–41] or eliminate functions

unreached from main [19, 33, 34]. None of them change the under-

lying program models. With extracted FSMs from FSMExtractor,

further code debloating can be performed through eliminating un-

necessary program logics. For example, given the extracted FSM

in Figure 2, developers may consider removing state open_double
and close_double. A tool can take the FSM as input and automat-

ically remove code pertaining to the two states. The tool can test

or validate the changed program by monitoring the control flow in

the FSM loop and the value of the state variable.

Fuzz Testing. Fuzzing is an automated testing technique, which

executes a program using randomly mutated inputs with the goal

to trigger unexpected program behaviors, such as crashes and asser-

tion errors [2, 11, 42]. Fuzzers are usually evaluated by measuring

code coverage. A better fuzzer can cover more lines of code or

branches under a given time constraint. The state-of-the-art fuzzers

are not good at processing FSMs in a program. We take the FSM in

Figure 1 as an example. String “||” is the only input which has two

characters and can transit the program to state close_set at line
20. If a fuzzer completely relies on randommutation, the probability

to generate “||” is very low (1/(256 × 256)). However, if the fuzzer
is enhanced by the FSM in Figure 2, it will easily figure out how to

create inputs to quickly cover all states and state transitions.

6 RELATEDWORKS
Program analysis to extract models. A set of work also applies

program analysis techniques to extract certain models implemented

in programs: for example, NFactor [38] uses symbolic execution

and program slicing to extract match-action tables in NF programs;

StateAlyzr [22] extracts state abstractions from implementations of

stateful protocols. Different from existing techniques, FSMExtractor

extracts FSMs, which are more concise and expressive.

Blackbox modeling. Another approach to get the FSM of a pro-

gram is blackbox modeling. L* algorithm invented by Angluin [6] is

the theoretical foundation. It executes a program with different in-

puts and synthesizes the FSM by observing outputs. L* algorithm is

applied in various scenarios (e.g. NF modeling [27], protocol analy-

sis [13]). Compared with FSMExtractor, blackbox approaches suffer

from two limitations. First, they model the whole program as one

single FSM in a coarse granularity, while it is possible that there are

multiple FSMs implemented in a program. Second, their complete-

ness and soundness are limited, since it is difficult to enumerate all

inputs for FSM inference.

7 CONCLUSIONS
Automatically extracting FSMs in a program is important and chal-

lenging. In this paper, we tackle this problem by building a tool,

FSMExtractor, which relies on static analysis to identify and synthe-

size implemented FSMs. Our evaluation shows that FSMExtractor

successfully identifies all FSMs and reports very few false positives.

In the future, we plan to combine FSMExtractor with existing net-

work verification or fuzzing techniques to build end-to-end network

or security applications.
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