
POSTER: PT-DBG: Bypass Anti-debugging with
Intel Processor Tracing

Guancheng Li†, Yongheng Chen§, Tianyi Li†, Tongxin Li†, Xinfeng Wu†, Chao Zhang‡∗ and Xinhui Han†∗
†Peking University ‡Tsinghua University §Nanjing University

{atum, litianyi, litongxin, wuxinfeng, hanxinhui}@pku.edu.cn,chaoz@tsinghua.edu.cn,changochen@smail.nju.edu.cn

Abstract—Debugging is one of most useful techniques used in
reverse engineering and diagnosing. However, some softwares,
especially commercial and malicious ones, have embedded anti-
debugging techniques to protect themselves from being analyzed.
Due to the diversity of anti-debugging techniques, evading anti-
debugging is challenging work, which relies heavily on expertise.
In this poster, we propose a novel approach to bypass anti-
debugging with Intel Processor Tracing (PT). It identifies the
location of anti-debugging code with the help of PT, and auto-
matically patches the code to bypass it, enabling developers to
debug anti-debugging software.

Index Terms—Reverse Engineering, Anti-debugging

I. INTRODUCTION

Debugging is a popular technique used in software di-
agnosing and reverse engineering, for vulnerability analysis
and malware analysis [1] etc. However, sometimes software
(e.g., malware) authors would like to protect their software
from being analyzed, and thus deploy some countermeasures.
Among them, anti-debugging is one of the most widely used
ones.

A process deployed with anti-debugging usually detects
the presence of debuggers (including virtual machines) in
various ways, and behaves differently (e.g., exit or hide the
malicious behavior) when a debugger is identified. Alternative
anti-debugging techniques could even interfere debuggers’
execution, and stop debuggers from attaching to the process.

To bypass anti-debugging, reverse engineers have to (1) hide
the presence of debuggers, or (2) find out the locations of anti-
debugging code and disable them. However, there are various
types of anti-debugging techniques to detect debuggers. It is
challenging to hide debuggers from all of them. Moreover,
multiple anti-debugging techniques could be deployed in a
single software. So, bypassing all of them costs abundant time
and efforts of experienced experts in practice.

In this poster, we present a novel solution PT-DBG to au-
tomatically identify anti-debugging code and disable them. It
compares two runtime execution traces of target applications,
with and without the presence of debuggers, and identifies
the divergence checks that are caused by anti-debugging code.
Then it patches the applications to bypass these checks.

However, it is challenging to collect the traces of ap-
plications with anti-debugging techniques. Traditional trace
collecting solutions, e.g., those based on dynamic binary
instrumentation (DBI) or virtual machine introspection (VMI),

∗ Corresponding Author.

could be detected by anti-debugging techniques. Fortunately,
Intel Processor Tracing (PT) [2], a new hardware feature in
Intel CPU, provides a new way to collect traces of processes.
Moreover, user-mode applications could not detect or interfere
the execution of PT. Our solution PT-DBG thus utilizes this
hardware feature to collect traces, and provides a strong
resilience to existing anti-debugging techniques.

II. ANTI-DEBUGGING TECHNIQUES

Existing anti-debugging techniques could be classified into
the following two categories.

A. Debugger Detection (type-1)

This type of anti-debugging techniques relies on detecting
the presence of debuggers (or VMs). The most straightforward
solution is directly calling a limited set of APIs, e.g., IsDe-
buggerPresent. However, this is not a reliable way to detect
debuggers, since these APIs could be hooked.

In practice, most solutions exploit footprints introduced by
debuggers (or VMs) to detect their presence. For example,
many debuggers use INT3 interrupts to set breakpoints, and
thus will catch and handle INT3 interrupts. So, a try/catch
statement, which deliberately throws and handles an INT3
interrupt, could be used to detect debuggers. If a debugger
is present, the interrupt will be caught by the debugger and
the catch block will not be executed. Since there are so many
unintended footprints introduced by debuggers, it is really
challenging to hide debuggers from all of them in practice.

B. Debugger Interfering (type-2)

This type of anti-debugging solutions stop debuggers by
interfering with their functionalities. For example, overwriting
the DebugPort structure, i.e., an object used for commu-
nication between debugger and debuggee, could break the
debuggers. According to the survey [3] [4], this type of anti-
debugging techniques is rare.

III. SYSTEM DESIGN AND EVALUATION

Fig.1 shows the architecture of our approach. At first, it
collects the runtime trace of target applications without the
presence of debuggers using Intel PT (i.e., shadow process).
Then, it compares the traces against the patterns of known
type-2 solutions. Once a pattern is matched, it patches the
binary and traces accordingly. Furthermore, it collects the
runtime trace again using a debugger, and compares the traces



Fig. 1. Architecture of PT-DBG

at each branch, to detect type-1 anti-debugging code. Once a
divergence is found, the debugger patches the code at runtime
and continues debugging.

A. Bypass type-2 anti-debugging

If a program uses the type-2 anti-debugging technique,
which interferences with debuggers, we could not collect
traces using a debugger. Thanks to the fact that known ways
to interfere debuggers are limited, we are able to analyze them
case by case and summarize their patterns.

We could thus use Intel PT to collect the traces of target
applications (in shadow process), including the branch taken
or not taken decision, indirect call/jmp target IP, and exception
handling target IP. Then, we will match the traces with known
type-2 patterns. As a result, we could get a list of type-2
anti-debugging locations, and then apply the associated bi-
nary patching algorithms accordingly. Then, we could further
analyze type-1 anti-debugging in the patched binary.

B. Bypass type-1 anti-debugging

1) Identify type-1 anti-debugging code: We will reuse the
traces collected by Intel PT in the previous step. Then, we will
use the debugger to start the main process to analyze the target
application. The main process is fed with the same input as
the shadow process. Moreover, all randomness sources (e.g.,
the random function) are patched. So, the control flow of the
main process and the one of the shadow process are identical
until the anti-debugging code is triggered.

The debugger then inspects the main process’ control flow,
including targets of each conditional branch instruction, indi-
rect call/call instruction and exception handling, with the one
collected by Intel PT. If the control flow diverges at some
point, then an anti-debugging code is identifies.

It is worth noting that, we ignore control flow inside library
functions that are not shipped with the target application, since
they are not related to anti-debugging.

2) Patch type-1 anti-debugging code: After identifying the
anti-debugging code, we will patch the execution and force it
to bypass the anti-debugging checks and continuously execute.

Depending on the type of the control flow divergences,
different algorithms will be used to patch the binary. If it
diverges at a conditional branch, we could simply overwrite
this instruction with an unconditional branch that goes to the
correct target. If it diverges when handing exceptions, the

debugger will pass the exceptions caught by the debugger back
to the target application again. In a rare case, the control flow
diverges at indirect call/jmp instructions. In this case, we will
patch the target to the right place.

C. Preliminary Evaluation
We have analyzed several anti-debugging challenges from

famous international CTF competitions. The result shows that
all the anti-debugging techniques in these challenges can be
evaded by our approach effectively. We will further evaluated
our solution on real world software in the future.

IV. RELATED-WORK

There are some new anti-debugging techniques to pro-
tect software from being debugged [5]. But bypassing anti-
debugging is rarely studied in the community [6] [7]. Few
solutions aim at bypassing anti-debugging automatically. To
our best knowledge, our work is the first generic hardware-
based solution to bypass anti-debugging automatically.

V. CONCLUSION

In this poster, we proposed a novel approach based on Intel-
PT to deal with the anti-debugging challenge. It can bypass
anti-debugging by automatically identifying the locations of
anti-debugging code and patching the binaries accordingly.
We have made a preliminary evaluation to demonstrate the
effectiveness of our approach. We will study deeper in this
topic and evaluate it on real world software in the future.

REFERENCES

[1] A. Mylonas and D. Gritzalis, “Book review: Practical malware analysis:
The hands-on guide to dissecting malicious software,” Computers &
Security, vol. 31, no. 6, pp. 802–803, 2012.

[2] “Intel processor tracing,” https://software.intel.com/en-
us/blogs/2013/09/18/processor-tracing, accessed: 2013-09-18.

[3] P. Chen, C. Huygens, and L. e. Desmet, Advanced or Not? A Comparative
Study of the Use of Anti-debugging and Anti-VM Techniques in Generic
and Targeted Malware. Springer International Publishing, 2016.

[4] R. Rubira Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not
academical overview of malware anti-debugging, anti-disassembly and
anti- vm technologies - white paper,” 2012.

[5] H. Cho, J. Lim, H. Kim, and J. H. Yi, “Anti-debugging scheme for
protecting mobile apps on android platform,” Journal of Supercomputing,
vol. 72, no. 1, pp. 232–246, 2016.

[6] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li, “An automatic approach to
detect anti-debugging in malware analysis,” Communications in Computer
& Information Science, vol. 320, pp. 436–442, 2013.

[7] J. K. Lee, B. J. Kang, and E. G. Im, “Rule-based anti-anti-debugging
system,” in Research in Adaptive and Convergent Systems, 2013.


